If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-25x+30.94=0
a = 4; b = -25; c = +30.94;
Δ = b2-4ac
Δ = -252-4·4·30.94
Δ = 129.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{129.96}}{2*4}=\frac{25-\sqrt{129.96}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{129.96}}{2*4}=\frac{25+\sqrt{129.96}}{8} $
| 4n+28=6n | | 15u=8u+21 | | x2=49/729 | | 2.93+19=x | | 3b-9-8b=11-32 | | 3(2x=1)=4=10 | | 9d=81d= | | -3/5f=-15 | | x2=784 | | 10=(3.14/4)/x | | -8.8(x-3.75)=26.4 | | 9x+10=3x+34 | | x+19.00x=50 | | 9x10=3x+34 | | 5/6c=2/12 | | 6d+11=4d-7 | | -3(x-1)+8(8-3)=6x+7-5 | | 4x2-x+5=0. | | 3(1+3x)=2(-4+7) | | -10m+7=-7-11 | | 2(x+19)=5x+8 | | p/8=7/9p= | | 9a–2=–2 | | 8t+1=3t—19 | | 10,544=P(1+0.053x6) | | 4z-10=7z-31 | | 3=-2(-1/4s+5)+3 | | 8+5m=8m+32 | | -3(x-4)+x=2x-112 | | b-6/4=b+8/3 | | (1.045)^x=2 | | w-16=3.4 |